Activation of PLC by an endogenous cytokine (GBP) in Drosophila S3 cells and its application as a model for studying inositol phosphate signalling through ITPK1.
نویسندگان
چکیده
Using immortalized [3H]inositol-labelled S3 cells, we demonstrated in the present study that various elements of the inositol phosphate signalling cascade are recruited by a Drosophila homologue from a cytokine family of so-called GBPs (growth-blocking peptides). HPLC analysis revealed that dGBP (Drosophila GBP) elevated Ins(1,4,5)P3 levels 9-fold. By using fluorescent Ca2+ probes, we determined that dGBP initially mobilized Ca2+ from intracellular pools; the ensuing depletion of intracellular Ca2+ stores by dGBP subsequently activated a Ca2+ entry pathway. The addition of dsRNA (double-stranded RNA) to knock down expression of the Drosophila Ins(1,4,5)P3 receptor almost completely eliminated mobilization of intracellular Ca2+ stores by dGBP. Taken together, the results of the present study describe a classical activation of PLC (phospholipase C) by dGBP. The peptide also promoted increases in the levels of other inositol phosphates with signalling credentials: Ins(1,3,4,5)P4, Ins(1,4,5,6)P4 and Ins(1,3,4,5,6)P5. These results greatly expand the regulatory repertoire of the dGBP family, and also characterize S3 cells as a model for studying the regulation of inositol phosphate metabolism and signalling by endogenous cell-surface receptors. We therefore created a cell-line (S3ITPK1) in which heterologous expression of human ITPK (inositol tetrakisphosphate kinase) was controlled by an inducible metallothionein promoter. We found that dGBP-stimulated S3ITPK1 cells did not synthesize Ins(3,4,5,6)P4, contradicting a hypothesis that the PLC-coupled phosphotransferase activity of ITPK1 [Ins(1,3,4,5,6)P5+Ins(1,3,4)P3→Ins(3,4,5,6)P4+Ins(1,3,4,6)P4] is driven solely by the laws of mass action [Chamberlain, Qian, Stiles, Cho, Jones, Lesley, Grabau, Shears and Spraggon (2007) J. Biol. Chem. 282, 28117-28125]. This conclusion represents a fundamental breach in our understanding of ITPK1 signalling.
منابع مشابه
Molecular basis for the integration of inositol phosphate signaling pathways via human ITPK1.
Inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) is a reversible, poly-specific inositol phosphate kinase that has been implicated as a modifier gene in cystic fibrosis. Upon activation of phospholipase C at the plasma membrane, inositol 1,4,5-trisphosphate enters the cytosol and is inter-converted by an array of kinases and phosphatases into other inositol phosphates with diverse and critical c...
متن کاملRegulation of inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) by reversible lysine acetylation.
The enzyme inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) catalyzes the rate-limiting step in the formation of higher phosphorylated forms of inositol in mammalian cells. Because it sits at a key regulatory point in the inositol metabolic pathway, its activity is likely to be regulated. We have previously shown that ITPK1 is phosphorylated, a posttranslational modification used by cells to reg...
متن کاملSphingosine kinase-mediated Ca2+ signalling by G-protein-coupled receptors.
Formation of inositol 1,4,5-trisphosphate (IP3) by phospholipase C (PLC) with subsequent release of Ca2+ from intracellular stores, is one of the major Ca2+ signalling pathways triggered by G-protein-coupled receptors (GPCRs). However, in a large number of cellular systems, Ca2+ mobilization by GPCRs apparently occurs independently of the PLC-IP3 pathway, mediated by an as yet unknown mechanism...
متن کاملEnhancement of intracellular sphingosine-1-phosphate production by inositol 1,4,5-trisphosphate-evoked calcium mobilisation in HEK-293 cells: endogenous sphingosine-1-phosphate as a modulator of the calcium response.
Sphingosine-1-phosphate (S1P) regulates many cellular functions, such as migration, differentiation and growth. The effects of S1P are thought to be primarily mediated by G-protein coupled receptors, but an intracellular function as a calcium releasing second messenger has also been proposed. Here we show that in HEK-293 cells, exogenous S1P mobilises sequestered calcium by a mechanism primaril...
متن کاملPhosphatidylinositol transfer protein dictates the rate of inositol trisphosphate production by promoting the synthesis of PIP2
BACKGROUND Phosphatidylinositol transfer protein (PI-TP), which has the ability to transfer phosphatidylinositol (PI) from one membrane compartment to another, is required in the inositol lipid signalling pathway through phospholipase C-beta (PLC-beta) that is regulated by GTP-binding protein(s) in response to extracellular signals. Here, we test the hypothesis that the principal role of PI-TP ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 448 2 شماره
صفحات -
تاریخ انتشار 2012